MINUTES OF THE PhD STUDY BOARD MEETING

PhD Study Program: Engineering of Agricultural Technological Systems (EATS)

The PhD Board meeting for the PhD study program in Engineering of Agricultural Technological Systems (EATS) was held in person on January 29th, 2025, at 9:00 AM in the Consultation Room at the Faculty of Engineering, CZU. The attendance list is attached.

AGENDA:

- 1. Welcome and Introduction
 - Prof. Herak, Head of the PhD Board, opened the meeting.

2. Presentation on Progress of Dissertation Research by PhD Student Mr. Vijay Chandan

- Mr Chandan's presentation highlighted the near-completion of the objectives outlined in his thesis research, showcasing his readiness for the final defence. Committee members raised questions on several key topics: the fulfilment of the study's goals, the application of automotive standards and norms, technical aspects of the use of English, and the timeline for the final steps leading to the thesis defence.
- The Head of the PhD Board reminded Mr. Chandan that, according to the board's decision on January 17, 2022, only a thesis based on a collection of articles is accepted for the successful completion of the EATS program. However, per established practice, PhD Board-approved rules typically take effect at the start of the following academic year, which in this case was September 30, 2022. Since Mr. Chandan enrolled in the program on January 28, 2022, before the new academic year began, the board agreed to allow him to submit his dissertation as a traditional research thesis.

3. Approval of Progress for PhD Student Mr Vijay Chandan

• The PhD Board recommended that Mr. Chandan continue in the PhD study program – EATS.

4. Approval of Drafts of New Dissertation Topics

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Asc. Prof. Zdeněk Aleš, Ph.D.
Department	Department of Quality and Dependability of Machines
Topic	Multicriteria Analysis of Reliability
Annotation	The aim of the dissertation thesis is to develop a methodology for multicriteria analysis of reliability for technical systems. This methodology will integrate multiple reliability factors such as failure probability, maintenance costs, operational availability, and environmental impacts into a comprehensive evaluation framework. The thesis will involve creating a mathematical model that uses multicriteria decision-making techniques to analyze various reliability scenarios. Validation of the proposed methodology will be performed through case studies in fields like transportation, or industrial automation. The student will compare the results with traditional reliability analysis approaches and assess the benefits of the proposed method.
Compliance with	The dissertation thesis aligns with the objectives of the EATS study
targets of EATS study	program, focusing on innovative strategies for reliability assessment of machines.

• The PhD Board unanimously approved all the dissertation topics presented.

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Prof. Ing. David Herák, Ph.D.
Department	Mechanical Engineering
Торіс	Utilisation of the finite element method to describe the
	mechanical behavior of oilseeds under compression loading
Annotation	The dissertation thesis aims to create comprehensive models of the
	mechanical behaviour of oilseeds using the finite element method.
	These models will describe the mechanical behaviour of the bulk
	seeds under compression loading, the relaxation behaviour, the

	creep behaviour, as well as the oil points. Models should be used to
	create the "digital twin of the seed", which will show the same
	mechanical and physical behaviour as the real oilseed in the context
	of oilseed pressing. Models should be created using the ANSYS
	system.
Compliance with	The topic fits into the essence of the idea of Industry 4.0 and
targets of EATS study	Agriculture 4.0, respectively.
program	

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	prof. Rajesh Kumar Mishra, Ph.D.
Department	Material Science and Manufacturing technology
Торіс	Bio-based reinforcement of soil to prevent erosion
Annotation	This research is aimed to investigate the mechanical and functional
	behavior of natural fiber-based 3D woven geotextile fabrics used in
	soil protection. An exploratory work will be carried out in the field
	of soil erosion protection in which natural cellulosic fiber-based 3D
	woven fabrics will be used in geo-reinforcement. The thesis will be
	focused to investigate the soil reinforcing performance of 3D
	fabrics having various structures in comparison with 2D fabrics.
	The gap in the research of 3D woven geotextiles has given the
	opportunity to carry out the research work further. Analysis of
	structures, properties and their interrelationships in order to
	optimize the design parameters of 3D woven architecture.
	Characterization of 3D woven structural geotextiles with
	respect to functional properties such as soil erosion protection,
	mechanical and environmental performance.
	• Modeling the 3D fabric structure: The structure of 3D woven
	architecture will be modeled with regard to its geometry for soil
	reinforcement
	• Prediction of mechanical properties: The mechanical properties
	will be predicted using computing tools (ANSYS, ABAQUS,
	Solidworks)

	• Simulation of erosion resistance performance: The erosion
	resistance will be simulated for soil reinforced with 3D woven
	structures under different soil condition, rainfall and snowfall.
	• Validation of predicted results: The predicted results will be
	validated with experimental samples for optimization of 3D fabric
	structures without and with soil.
Compliance with	The topic is inline with the study program EATS, Industry-4.0/5.0,
targets of EATS study	Agriculture-4.0/5.0.
program	

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	prof. Rajesh Kumar Mishra, Ph.D.
Department	Material Science and Manufacturing Technology
Topic	Bio-degradable composite food packaging using micro/nano
	fillers from cellulosic waste materials
Annotation	The research aims at developing a new generation of packaging
	materials derived from bio-based polymers and reinforced with
	micro/nanocrystalline cellulose so as to make it degradable at the
	end of life while retaining its basic functionality. The biopolymers
	will be based on Polyvinyl alcohol (PVA), Polylactic acid (PLA),
	bacterial cellulose etc. The nanocellulose will be derived from agro
	waste fibrous materials. A nontoxic top-down approach based on
	planetary ball milling will be involved to derive nanocrystalline
	cellulose from waste fibers. The mechanical, chemical recycling of
	the new packaging materials used in the food packaging industry
	will be achieved. The balance between the mechanical and chemical
	stability while protecting the content and at the same time easy and
	environment friendly degradation/recycling at the end of life will be
	investigated.
Compliance with	The topic is inline with the study program EATS, Industry-4.0/5.0,
targets of EATS study	Agriculture-4.0/5.0.
program	

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Doc. Ing. Abraham Kabutey, Ph.D.
Department	Mechanical Engineering
Торіс	Evaluation of thermal pretreatment effect on the oil processing
	parameters of selected oilseeds under screw pressing
Annotation	Mechanical pressing is widely used for oil extraction from edible
	oilseeds due to its several advantages such as high-oil quality
	production. From the literature perspective, continuing research is
	still required to understand the complexities in mechanical screw
	pressing operation in terms of the input processing factors such as
	heating temperature, heating time, moisture content, applied
	pressure, among others. These input factors thus affect the pressing
	process regarding the oil extraction efficiency, energy requirement
	and the residual oil in the press cake. These factors can be
	understood first under the laboratory-scale research by applying
	appropriate experimental designs, statistical techniques and
	optimization concepts to achieving higher quality of oil, higher oil
	extraction efficiency and optimal energy efficiency. In this research,
	the oilseeds will be selected based on literature information.
Compliance with	The dissertation thesis is within the EATS study programme to aid
targets of EATS study	in the design of an efficient oil extraction systems.
program	

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Doc. Ing. Abraham Kabutey, Ph.D.
Department	Mechanical Engineering
Торіс	Investigation of mechanical and rheological properties of bulk
	oilseeds under quasi-static and dynamic loadings

Annotation	The static mechanical test techniques can be extended to evaluate
	bulk oilseeds processing performance under dynamic loading
	conditions which is a vital research hypothesis that needs to be
	investigated. The research is seeking to obtain adequate information
	on both the experimental and theoretical concepts of the mechanical
	and rheological properties of bulk oilseeds under quasi-static and
	dynamic loading tests using the universal compression testing
	machine. Quasi-static and dynamic compression experiments of
	bulk oilseeds will be conducted at different input processing factors.
	The influence of the input processing factors on the mechanical and
	rheological properties of bulk oilseeds under quasi-static and
	dynamic loadings will be examined. Multivariate data techniques
	will be employed to analyze the determined responses.
Compliance with	The dissertation thesis is within the EATS study programme and
targets of EATS study	Agriculture 4.0. to aid in the design of an efficient oil extraction
program	systems.

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Doc. Ing. Abraham Kabutey, Ph.D.
Department	Mechanical Engineering
Торіс	Assessment of physiochemical properties, fatty acids
	compositions, colour and sensory attributes of edible oils under
	different extraction methods
Annotation	Quality edible oil parameters need to be established to preserve
	consumer awareness and safety. The nutritional value and sensory
	characteristics of edible oils are compromised by rancidity
	development leading to spoilage. The sensory qualities of edible
	oils include colour, brightness, smell, flavour and aroma as well as
	the age of the oil which are influenced by several factors during the
	production process. Edible oils will be extracted under mechanical
	screw and linear pressing methods. The sensory qualities of the
	extracted oils will be evaluated by using a combination of sensory
	and analytical methods. The chemical properties namely peroxide

	value, acid value, iodine value and free fatty acid among others will
	be examined by means of a titration procedure. The quality of edible
	oils is also influenced by its fatty acid composition which will be
	analysed using appropriate instrumentation.
Compliance with	The dissertation thesis is within the EATS study programme to aid
targets of EATS study	in the design of an efficient oil extraction systems.
program	

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Doc. Ing. Abraham Kabutey, Ph.D.
Department	Mechanical Engineering
Topic	Adoption of machine learning algorithms for describing drying
	kinetics of selected agricultural products
Annotation	The drying of agricultural produce entails a complex thermal
	process in which simultaneous heat and mass transfer occur. The
	process ensures the reduction of moisture content in the agricultural
	product to extend the shelf life. The drying kinetics of a product
	depends on various factors such as hot air-speed, initial moisture
	content, final moisture content, relative humidity, temperature,
	dimensions, form, composition, external surface, intermittence,
	pressure, and porosity, among others. Kinetic modelling of process
	parameters by employing supervised machine learning models such
	as linear regression, K-means clustering, support vector machine
	among others is very useful in food processing. Selected
	agricultural produce will be examined under various drying
	conditions where the input and output drying parameters will be
	subjected to statistical, modelling and optimization techniques.
Compliance with	The dissertation thesis is within the EATS study programme to aid
targets of EATS study	in the design of an efficient oil extraction systems.
program	

PhD Program	Engineering of Agricultural Technological Systems
Supervisor	Prof. Ing. David Herák, Ph.D.
Department	Mechanical Engineering
Торіс	Digital Agriculture for Enhancing Smallholder Palm Oil
	Farming in Indonesia
Annotation	The dissertation thesis aims to explore the implementation of digital
	agriculture technologies and their influence on the productivity,
	sustainability, and economic resilience of smallholder palm oil
	farmers in Indonesia. The research will focus on developing data-
	driven models that incorporate precision agriculture tools, such as
	remote sensing, IoT-based monitoring systems, and predictive
	analytics, to optimise plantation management and resource
	allocation. These models will evaluate the impact of digital
	solutions on yield improvement, environmental conservation, and
	market access. The findings will serve as the basis for creating a
	"digital twin of the farm," simulating the physical and operational
	dynamics of smallholder farms to provide actionable insights and
	decision-making support.
Compliance with	The topic fits into the essence of the idea of Industry 4.0 and
targets of EATS study	Agriculture 4.0, respectively.
program	

5. Any Other Business

- The discussion turned to strengthening international cooperation within the PhD study program.
- Additionally, the upcoming amendment to the Higher Education Act and its potential impact on PhD studies was addressed.

Prague, January 29th, 2024

prof. Ing. David Herák, Ph.D. Head of PhD Board